Recent Initiative of Solar and Wind Forecasting Using a High Resolution Cloud Resolving Model

Presented by

Greeshma M Mohan

Radhika Kanase, Madhuparna Halder, P. Mukhopadhyay, Medha Deshpande, Malay Ganai

Indian Institute of Tropical Meteorology, Pune-411008, India

Current Practices in Wind & Solar Forecasting , 22 January 2018, Chennai

Numerical Model : Introduction

Numerical weather prediction (NWP) is a method of weather forecasting that employs a set of equations that describe the flow of fluid. These equations are translated into computer code and use numerical methods, parameterizations of other physical processes and combined with initial and boundary conditions before being run over a domain (geographic area)

Governing Equations

WRF Modeling System Flow Chart

WRF Modeling System Components

WPS

geogrid.exe creates terrestrial data (static).

ungrib.exe unpacks GRIB meteorological data and packs it into an <u>intermediate</u> file format. **metgrid.exe** interpolates the meteorological data horizontally onto your model domain. Output from **metgrid.exe** is used as input to WRF.

WRF ARW

real.exe vertically interpolates the data onto the model coordinates. **wrf.exe** generates the model forecast.

Post-Processing:

Graphics and verification tools e.g. VAPOR, NCL, ARWPost etc.

Mass based terrain following coordinate

Arakawa C-grid staggering

Model Setup for Wind Simulation

Domains & Resolution	4 domains with 27km, 9km, 3km and 1km resolution (Based on domain sensitivity Expt)					
Initial Conditions	GFS T1534 00 UTC (Based on IC sensitivity)					
Model Integration Time	48 h					
Model Output	At 2 min interval for inner domain of 1km					
Cumulus Parameterization	KF Scheme (Based on Cu sensitivity)					
Microphysics	Morrison Scheme (Based on Microphysics sensitivity)					
Planetary Boundary Layer	Yonsei University (YSU) Scheme (Based on PBL sensitivity)					
Radiation Scheme	RRTM for Long Wave and Dhudhia for Short Wave					

Distribution of wind turbines near Agaswadi (lat:17.5103°N & lon:74.6274°E)

Percentage error at almost all the time remains below 15% after Bias Correction

Percentage error at almost all the time remains below 15% after Bias Correction

Scientific Percentage Error

Percentage Error = $\frac{(Model-Observation)*100}{(Observation)}$

Percentage Error as per MNRE Stakeholders Formulation

Percentage Error = $\frac{(Actual Generation - Scheduled Generation)*100}{(Available Capacity)}$

Model Setup for Solar Simulation

Comparison of WRF and WRF-Solar

	WRF-Solar	WRF
Solar energy applications	Output DNI and DIF	n—1
	High-frequency output of surface irradiance	—
	Solar position algorithm includes EOT	EOT is not included
Aerosol-radiation feedbacks	Observed/model climatologies or time-varying aerosols	Model climatology
Cloud-aerosol feedbacks	Aerosol indirect effect represented	_
Cloud-radiation feedbacks	Cloud particles consistent in radiation and microphysics	_
	Shallow cumulus feedback to radiation	
	Fully coupled aerosol-cloud-radiation system	Uncoupled

Pedro. J.A et al., WRF-SOLAR Description and Clear-Sky Assessment of an Augmented NWP Model for Solar Power Prediction. 2016. Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-14-00279.1

Model Strategy: WRF-SOLAR

Domains & Resolution	4 domains with 27km, 9km, 3km and 1km resolution				
Initial Conditions	GFS analysis data of 0.5° X 0.5° for Apr 2015; GFS T1534 0.125° X 0.125° for other experiments				
Model Output	At 30 min interval for inner domain of 1km				
Cumulus Parameterization	Grell-Freitas Ensemble Scheme				
Microphysics	Aerosol Aware Thompson Scheme				
Planetary Boundary Layer	Yonsei University (YSU) Scheme				
Radiation Scheme	RRTMG for Long Wave and Short Wave				
Experiments Conducted	Clear Conditions: 1-3 Apr 2015, 2-4 Apr 2015, 7-9 Apr 2015 Partially Cloudy Conditions: 5-7 Dec 2016 Heavy Rain Conditions: 16-18 Sep 2016				

Solar Insolation During Cloudy Conditions (Location: Pune) 5-7 Dec 2016 Daily Averaged Solar Insolation (5-7 Dec 2016) 900 Solar Irradiance (W/m^-2) 800 240 700 Solar Irradiance (W/m^2) 000 000 000 000 000 000 600 500 400 300 200 100 0 05-12-2016 05:30 05-12-2016 07:00 05-12-2016 07:00 05-12-2016 10:00 05-12-2016 11:30 05-12-2016 14:30 05-12-2016 14:30 05-12-2016 14:00 05-12-2016 19:00 05-12-2016 19:00 06-12-2016 02:30 06-12-2016 04:00 20:30 22:00 23:30 01:00 05:30 08:30 10:00 11:30 13:00 14:30 16:00 17:30 19:00 20:30 23:30 02:30 07-12-2016 05:30 120 05-12-2016 12-2016 06-12-2016 2-2016 2016 2-2016 2-2016 12-2016 12-2016 12-2016 12-2016 5-12-2016 15-12-2016 12-2016 06-12-2016 2-2016 12-2016 -12-2016 2-201 20 100 Day1 Day2 ģ ģ ģ Date & Time - SOLAR IMD 28-30 Nov 2016 Daily Averaged Solar Insolation (28-30 Nov 2016) 1000 Solar Irradiance (W/m^-2) 900 240 800 700 600 500 400 300 200 100 0 11:30 16:00 17:30 -2016 01:00 -2016 02:30 16 05:30 16 07:00 16 08:30 10:00 13:00 14:30 20:30 4:30 16:00 17:30 05:30 01:00 08:30 10:00 19:00 23:30 04:00 19:00 20:30 22:00 30 ş ñ 1-2016 05:3 120 1-2016 (-2016 1-2016 1-2016 -2016 -2016 --2016 -2016 -2016 ; -2016 -2016 2016 --2016 -2016 ō ō ō ω ŵ ò é ¢ ģ ശ 201 201 202 201 -201 201 100 -201 201 201 ş š Š 201 Day1 Day2 28-1 28-1 28-1 30-1 200 28-28-28-28-28-28 28 28å ş 29ŝ ŝ స్ట 29 ģ

Date & Time

16 Sep 2016 13:45 IST

Daily Averaged Soalr Insolation (16-18 Sep 2016)

17 Sep 2016 09:45 IST

Summary

- □ The high resolution GFS T1534 with 12km resolution shows high potential of providing adequate IC and BCs for cloud resolving forecast of wind and solar.
- The present ARW model configuration with 1 km horizontal resolution, 45 vertical levels, MODIS landuse, Morrison Scheme as microphysics, YSU Scheme as PBL shows better simulation of wind.
- □ The linear bias correction method has improved the wind forecast with percentage error (Stakeholder) <<< 15%</p>
- The simulation of solar irradiance, WRF-SOLAR gives better simulation than the normal WRF model. It is due to the incorporation of cloud-aerosol-radiation feedback mechanism in the WRF-SOLAR.

Linear Bias Correction Method

Date & Time	Obs_ Wind	Model_Wind	Obs_Power	Model_Power	Wind_Error (Model-Obs)	Avg_Error	BC_Model_ Wind	BC_Model_ Power	
110717_0530	8.2763	6.76	721.7056	182.48599	-1.52				
110717_0540	8.8956	7.29	852.7614	217.58299	-1.61	\mathbf{N}			
110717_0550	8.9744	7.22	940.4647	213.683	-1.75	1.62			
110717_0600	8.7982	6.95	886.2106	198.08501	-1.85	1.74	8.848806667	348.22	
110717_0610	9.2737	6.84	953.7506	186.386	-2.43	2.01	8.683273333	332.62201	
110717_0620	9.8982	6.95	982.2347	198.08501	-2.95	2.41	8.853186667	352.12	Addition or subtraction
110717_0630	9.5689	7.22	983.9039	213.683	-2.35	2.58	9.360353333	398.91501	of averaged errors
110717_0640	10.1046	7.91	985.0107	268.27802	-2.20	2.50	9.79281	441.811	from model wind i.e.
110717_0650	9.2483	8.70	952.3438	336.521	-0.55	1.70	10.40733	515.90399	(Model Wind) + / –
110717_0700	9.0396	9.10	952.4189	375.51801	0.06	0.89	10.40035333	515.90399	(Avg error)
110717_0710	9.363	9.25	952.7762	387.21701	-0.11	0.20	9.99436	463.259	(/ (vg chor)
110717_0720	8.7446	9.26	898.1693	387.21701	0.51	-0.15	9.451626667	408.66501	
110717_0730	7.7362	9.30	629.3781	395.01599	1.57	-0.66	9.1035	375.51801	
110717_0740	8.223	9.08	710.8985	369.668	0.86	-0.98	8.645413333	326.772	
110717_0750	9.4087	9.17	908.7769	379.41699	-0.24	-0.73	8.103733333	283.87701	
110717_0800	9.0476	9.18	887.7852	379.41699	0.14	-0.25	8.43878	309.224	
Average (first three rows								\backslash	
					of error) i.e. running mean of every 3 consecutive errors.				Interpolated value of power for bias corrected wind

STATE OF THE ART HIGH RESOLUTION GLOBAL MODELLING SYSTEM 12KM RESOLUTION

SCHEMATIC OF GFS (SL) T1534 L64 RUNNING AT IITM

